Wednesday, October 20, 2010

AM transmission

In order to better understand the way the radio transmitter works, block - diagram of a simple AM (amplitude modulated) signal transmitter is shown on Pic.2.2. The amplitude modulation is being performed in a stage called the modulator. Two signals are entering it: high frequency signal called the carrier (or the signal carrier), being created into the HF oscillator and amplified in the HF amplifier to the required signal level, and the low frequency (modulating) signal coming from the microphone or some other LF signal source (cassette player, record player, CD player etc.), being amplified in the LF amplifier. On modulator's output the amplitude modulated signal UAM is acquired. This signal is then amplified in the power amplifier, and then led to the emission antenna.
 
The shape and characteristics of the AM carrier, being taken from the HF amplifier into the modulator, are shown on Pic.2.3-a. As you can see, it is a HF voltage of constant amplitude US and frequency fS. On Pic.2.3-b the LF signal that appears at the input of the modulator at the moment t0 is shown. With this signal the modulation of the carrier's amplitude is being performed, therefore it is being called the modulating signal. The shape of the AM signal exiting the modulator is shown on Pic.2.3-c. From the point t0 this voltage has the same shape as that on Pic.2.3-a. From the moment t0 the amplitude of AM signal is being changed in accordance with the current value of the modulating signal, in such a way that the signal envelope (fictive line connecting the voltage peaks) has the same shape as the modulating signal.
Let's take a look at a practical example. Let the LF signal on Pic.2.3-b be, say, an electrical image of the tone being created by some musical instrument, and that the time gap between the points t0 and t2 is 1 ms. Suppose that carrier frequency is fS=1 MHz (approximately the frequency of radio Kladovo, exact value is 999 kHz). In that case, in period from t0 till t2 signals us on Pic.2.3-1 and uAM on 2.3-c should make a thousand oscillations and not just eighteen, as shown in the picture. Then It is clear that it isn't possible to draw a realistic picture, since all the lines would connect into a dark spot. The true picture of AM signal from this example is given on Pic.2.3-d. That is the picture that appears on screen of the oscilloscope, connected on the output of the modulator: light coloured lines representing the AM signal have interconnected, since they are thicker than the gap between them.
Block - diagram on Pic 2.2 is a simplified schematic of an AM transmitter. In reality there are some additional stages in professional transmitters that provide the necessary work stability, transmitter power supply, cooling for certain stages etc. For simple use, however, even simpler block diagrams exist, making the completion of an ordinary AM transmitter possible with just a few electronic components

Principal of radio transmission


Transfer of information (speech, music, image, computer data etc.) by radio can be presented in its simplest form with block - diagram as on Pic.2.1. That is a transmission realized by amplitude - modulated signal. Since, in our example, the information being transferred is the sound, the first step of such transmission is converting the sound into electrical signal, this being accomplished by a microphone. The low - frequency (LF) voltage at microphone output (Pic.2.1-a), that represents the electrical "image" of the sound being transferred, is being taken into the transmitter. There, under the effect of LF signal, the procedure called amplitude modulation is being carried out, and on its output high - frequency (HF) voltage is generated, its amplitude changing according to the current LF signal value. HF voltage creates HF current in the antenna, thus generating electromagnetic field around it. This field spreads through the ambient space, being symbolically shown on Pic.2.1 with dashed circles. Traveling at the speed of light (c=300 000 km/s), the electromagnetic field gets to the reception place, inducing the voltage in the reception antenna, as shown on Pic.2.1-c. This voltage has the same profile as the one on Pic.2.1-b, except it has much smaller amplitude. In the receiver, the amplification and detection are carried out first, resulting with the LF voltage on its output, that has the same profile as the one on Pic.2.1-a. This voltage is then transformed into sound by loudspeaker, that sound being exactly the same as the sound that acted upon the microphone. This, naturally, is the way it would be in ideal case. Back to reality, due to device imperfection as well as the influence of various disturbances, the sound being generated by the loudspeaker differs from the one that acts upon the microphone membrane. The block - diagram on Pic.2.1 (excluding the HF signal shape) is also applicable in case of radio transmission being carried out by frequency modulation. In that case frequency modulation is being carried out in the transmitter, under the effect of LF signal coming from the microphone, therefore HF signals on Pics.2.1-b and 2.1-c having constant amplitude, and their frequency being changed in accordance with the actual value of LF signal from the microphone. In fact, all types of radio transmission can be presented with Pic.2.1. First, the information being sent is always transformed into electrical signal through the appropriate converter. In telegraphy this converter is the pushbutton, in radiophony it's a microphone, in television engineering an image analysis cathode ray tube (CRT) etc. Then, with this "electrical image" of information, the modulation is being done. The modulated HF signal is being transferred into antenna and transmitted. On the reception place, the modulated signal from the reception antenna is being amplified and detected and then, again with the appropriate converter (pen recorder, loudspeaker, TV CRT etc.), the information is transformed back into its original form

Tuesday, October 19, 2010

The circuit for a powerful AM transmitter using ceramic resonator/filter of 3.587 MHz is presented here. Resonators/filters of other frequencies such as 5.5 MHz, 7 MHz and 10.7 MHz may also be used. Use of different frequency filters/resonators will involve corresponding variation in the value of inductor used in the tank circuit of oscillator connected at the collector of transistor T1.
The AF input for modulation is inserted in series with emitter of transistor T1 (and resistor R4) using a transistor radio type audio driver transformer as shown in the circuit. Modulated RF output is developed across the tank circuit which can be tuned to resonance frequency of the filter/resonator with the help of gang condenser C7. The next two stages formed using low-noise RF transistors BF495 are, in fact, connected in parallel for amplification of modulated signal coupled from collector of transistor T1 to bases of transistors T2 and T3. The combined output from collectors of T2 and T3 is fed to antenna via 100pF capacitor C4.
The circuit can be easily assembled on a general-purpose PCB. The range of the transmitter is expected to be one to two kilometers. The circuit requires regulated 9-volt power supply for its operation. Note: Dotted lined indicates additional connection if a 3-pin filter is used in place.

40 meter distance radi transamission

 Using the circuit of 40-metre band direct-conversion receiver descr- ibed here, one can listen to amateur radio QSO signals in CW as well as in SSB mode in the 40-metre band. The circuit makes use of three n-channel FETs (BFW10). The first FET (T1) performs the function of ant./RF amplifier-cum-product detector, while the second and third FETs (T2 and T3) together form a VFO (variable frequency oscillator) whose output is injected into the gate of first FET (T1) through 10pF capacitor C16. The VFO is tuned to a frequency which differs from the incoming CW signal frequency by about 1 kHz to produce a beat frequency in the audio range at the output of transformer X1, which is an audio driver transformer of the type used in transistor radios. The audio output from transformer X1 is connected to the input of audio amplifier built around IC1 (TBA820M) via volume control VR1. An audio output from the AF amplifier is connected to an 8-ohm, 1-watt speaker. The receiver can be powered by a 12-volt power-supply, capable of sourcing around 250mA current. Audio-output stage can be substituted with a readymade L-plate audio output circuit used in transistor amplifiers, if desired. The necessary data regarding the coils used in the circuit is given in the circuit diagram itself

long distance radio transmission

The power output of most of these circuits are very low because no power amplifier stages were incorporated.
The transmitter circuit described here has an extra RF power amplifier stage, after the oscillator stage, to raise the power output to 200-250 milliwatts. With a good matching 50-ohm ground plane antenna or multi-element Yagi antenna, this transmitter can provide reasonably good signal strength up to a distance of about 2 kilometres.
The circuit built around transistor T1 (BF494) is a basic low-power variable-frequency VHF oscillator. A varicap diode circuit is included to change the frequency of the transmitter and to provide frequency modulation by audio signals. The output of the oscillator is about 50 milliwatts. Transistor T2 (2N3866) forms a VHF-class A power amplifier. It boosts the oscillator signals� power four to five times. Thus, 200-250 milliwatts of power is generated at the collector of transistor T2.
For better results, assemble the circuit on a good-quality glass epoxy board and house the transmitter inside an aluminium case. Shield the oscillator stage using an aluminium sheet.
Coil winding details are given below:
L1 - 4 turns of 20 SWG wire close wound over 8mm diameter plastic former.
L2 - 2 turns of 24 SWG wire near top end of L1.
(Note: No core (i.e. air core) is used for the above coils)
L3 - 7 turns of 24 SWG wire close wound with 4mm diameter air core.
L4 - 7 turns of 24 SWG wire-wound on a ferrite bead (as choke)
Potentiometer VR1 is used to vary the fundamental frequency whereas potentiometer VR2 is used as power control. For hum-free operation, operate the transmitter on a 12V rechargeable battery pack of 10 x 1.2-volt Ni-Cd cells. Transistor T2 must be mounted on a heat sink. Do not switch on the transmitter without a matching antenna. Adjust both trimmers (VC1 and VC2) for maximum transmission power. Adjust potentiometer VR1 to set the fundamental frequency near 100 MHz.
This transmitter should only be used for educational purposes. Regular transmission using such a transmitter without a licence is illegal in India

Principal of car tracker

 This FM radio-controlled anti- theft alarm can be used with any vehicle having 6- to 12-volt DC supply system. The mini VHF, FM transmitter is fitted in the vehicle at night when it is parked in the car porch or car park. The receiver unit with CXA1019, a single IC-based FM radio module, which is freely available in the market at reasonable rate, is kept inside. Receiver is tuned to the transmitter's frequency. When the transmitter is on and the signals are being received by FM radio receiver, no hissing noise is available at the output of receiver. Thus transistor T2 (BC548) does not conduct. This results in the relay driver transistor T3 getting its forward base bias via 10k resistor R5 and the relay gets energised. When an intruder tries to drive the car and takes it a few metres away from the car porch, the radio link between the car (transmitter) and alarm (receiver) is broken. As a result FM radio module gene-rates hissing noise. Hissing AC signals are coupled to relay switching circ- uit via audio transformer. These AC signals are rectified and filtered by diode D1 and capacitor C8, and the resulting positive DC voltage provides a forward bias to transistor T2. Thus transistor T2 conducts, and it pulls the base of relay driver transistor T3 to ground level. The relay thus gets de-activated and the alarm connected via N/C contacts of relay is switched on. If, by chance, the intruder finds out about the wireless alarm and disconnects the transmitter from battery, still remote alarm remains activated because in the absence of signal, the receiver continues to produce hissing noise at its output. So the burglar alarm is fool-proof and highly reliable.